Società Italiana di Fisiologia

The Italian Society of Physiology SPERIMENTAZIONE ANIMALE

FROM PRECLINICAL STUDIES TO DRUG MARKETING

Identification of new compounds

- Modification of compounds known to act on selected targets
- Computer aided molecular design
- Synthesis of plant extracts
- Biological mainpulation
- High throughput screening of chemical/natural compounds in search of a particular activity

Supervising authorities for clinical trials

In Italy: Several public health authorities (AIFA; Istituto Superiore di Sanità; local Ethics Committees)

In Europe: from 1995 EMA coordinates and harmonizes the procedures in the countries belonging to the UE

In **USA**: FDA

ONDATA

190

Development of new drugs

Development of new drugs

Development of new drugs

Panoramica sui punti decisionali e sulle fasi di sviluppo nella ricerca e nello sviluppo di farmaci

Goals of preclinical studies

Duration: 2-3 years

First phase

Pharmacodynamics

- Main effect
- Side effect
- Duration of the main effect

Acute toxicity

- Changes in vital signd
- DL50 determination

Chemical stability

Second phase

Pharmacokinetics

- Absorption
- Distribution
- Metabolism
- Excretion

Subacute and chronic toxicity

- Functional changes
- Anatomopathological changes
- Teratogenic effects
- Effects on fertility
- Effects on peri- and post-natal period

1

194

NEL

- Mutagenesis
- Cancerogenesis

Pharmaceutical technique

- Formulation
- Dosage

Extrapolation of the established dose in animals to humans

It is based on the knowledge of NOAEL (No Observable Adverse Effect Level) in the animal

Human Equivalent Dose (mg/kg) = Animal Dose (mg/kg) x Animal Km/Human Km

Km is a correction factor that reflects the relationship between body weight and body surface area

Km

Mouse = 3 Rat = 6 Guinea pig = 8 Rabbit = 12 Dog = 20 Human (adult) = 37 The **MRSD** (Maximum Recommended Starting Dose) used to start a clinical trial is the calculated HED divided by a safety factor (usually 10) in order to minimize the risk of toxicity

Clinical trial

Any form of planned experiment involving people, designed to clarify the most appropriate treatment for future patients with a given medical condition

"ONDATA

194

Clinical trial: phase I

TARGETS

- Tolerability in humans
- Pharmacokinetics
- Dosage schedule for use in Phase II

ONDATA

190

SUBJECTS

- 20-100 healthy volunteers (or patients in case of highly toxic drugs)
- DURATION
 - 1-2 years

Clinical trial: phase II

TARGETS

- Efficacy and tolerability in patients
- Identification of the dose/effect relationship
 SUBJECTS
- 100-500 patients
 DURATION
 - 1-2 years

Phase II is crucial in establishing whether or not to continue the trial.

The question is whether the result is so modest that it does not merit further study or good enough to justify the transition to Phase III.

Clinical trial: phase III

TARGETS

- Acquisition of efficacy and tolerability data on a large sample
- Verification of the clinical significance of predictable drug inetractions
- Final definition of the dose/effect relationship

SUBJECTS

• 1000-5000 patients

DURATION

• 3-4 years

Clinical trial: phase III

Different types of trials:

- 1. Uncontrolled trials
- 2. Non-randomized controlled trials
 - with parallel controls
 - with historical controls

3. Randomized controlled trials

Dropout rate

(from the start of clinnical development)

Developing new drugs is expensive and time-consuming

\$ (billions)

USD

\$1.18

2010

R&D Cost per Approved Drug Approved Cost of bringing new Average length of Year (Billions) (Millions) per year drug to the market drug development 1994 \$13.4 22 \$609.1 1995 \$15.2 28 \$542.9 10-15 yrs 1996 \$16.9 53 \$318.9 1997 \$19.0 39 \$487.2 \$2.17 1998 \$21.1 30 \$703.3 \$22.7 35 \$648.6 1999 \$26.0 27 \$963.0 9.7 yrs 2000 Years \$29.8 24 \$1,241.7 2001 2002 \$31.0 17 \$1,823.5 2003 \$34.5 21 \$1,642.9 2004 \$37.0 36 \$1,027.8 2005 \$39.9 20 \$1,995.0 \$1,972.7 2006 \$43.4 22 \$47.9 \$2,661.1 2007 18 \$1,975.0 2008 \$47.4 24 2009 \$46.4 26 \$1,784.6 2018 1990 2000 2010→2020 2010 \$50.7 21 \$2,414.3 \$1,620.0 2011 \$48.6 30 2012 \$49.6 39 \$1,271.8 2013 \$51.1 27 \$1,892.6 Total \$691.6 559 \$27,596.0

Average Cost of Drugs Approved by Year

Source: PhRMA, FDA

Enrolling patients is expensive, time-consuming and often challenging

Stratified Medical – Deep Learning in Drug Discovery

Drug repurposing/drug rescue reduce the drug discovery timeline (as well as costs)

Drug Repurposing: finding a new clinical use for an approved drug Drug rescue: finding a clinical use for a stalled clinical development stage compiound (phase II or beyond established PK and tolerability, maybe safety and usually a known chemical structure)

Drug Repurposing on target:

- Finding new uses of a drug acting through the originally known target
- Literature, omics experiments, ...
- TA NEL 194 Positive feature is that it is likely to be compatible with dosing of original drug Drug repurposing off target:
- Finding new uses of a drug acting through a novel or unanticipated target
- Docking, fingerprint methods, ...
- Drug was not originally optimised for that target, so need to be watchful of dosing ٠

Some examples of repurposed drugs

